• 协会简介
  • 新闻中心
  • 行业动态
  • 科普教育
  • 共享平台
  • 党建园地
  • 专家风采
  • 通知公告
    新闻资讯   ||  首页 - 新闻动态 - 新闻中心 - 国际动态
  • ·  协会动态
  • ·  通知公告
  • ·  平台介绍
  • ·  科普教育
  • ·  党建园地
  • ·  组织建设
  • ·  行业动态
  • ·  协会动态
  • ·  共享平台
  • ·  新闻中心
  • ·  专家风采
  • ·  打印需求
  • ·  设备信息
  • ·  活动动态
  • 国际动态 | 研究人员在功能性人体组织3D打印方面取得突破
    发布时间:2023.08.25    浏览次数:
    近日,悉尼大学和儿童医学研究所(CMRI)的科学家团队宣称,利用3D光刻印刷技术制造了能够准确模拟器官结构的功能性人体组织。

    △微结构壁龛的机械化学流光刻 (MCFL) 3D打印技术

    研究人员利用生物工程和细胞培养技术,指导从血细胞和皮肤细胞中提取的干细胞分化为特定类型的细胞。这些特定类型的细胞可以形成类似器官的结构。

    该项目由悉尼大学生物医学工程学院的Hala Zreiqat教授和Peter Newman博士,以及CMRI的胚胎学研究部门负责人Patrick Tam教授领导。该团队的研究论文题为《利用机械化学微结构细胞壁龛进行多细胞图案化编程》,已发表在《Advanced Science》杂志上。


    展望未来,研究团队将继续发展他们的技术,推动再生医学领域的发展,并探索治疗各种疾病的新方法。

    Hala Zreiqat教授评论道:“我们的新方法相当于给细胞提供了一本指南,使它们能够创建更有组织性、更接近其自然对应物的组织。这是朝着能够3D打印工作组织和器官的目标迈出的重要一步。”

    △3D打印过程图

    细胞使用说明书

    细胞需要通过定位精确的蛋白质和机械触发器的详细指令来构建组织。据Newman博士介绍,如果没有这些特定的指令,细胞很可能以不可预测和不精确的方式聚集在一起。

    通过这项研究,科学家们利用一种新颖的3D光刻印刷技术生成微观的机械和化学信号,引导细胞形成准确有序的类器官结构。

    这种技术成功地创建了类似骨骼结构的骨脂组织。还利用这种方法制造了类似早期哺乳动物发育过程的组织组装。

    Tam教授评论道:“过去,干细胞的培养可以产生许多细胞类型,但我们无法控制它们在3D空间中的分化和组装。通过这种生物工程技术,我们现在可以指导干细胞形成特定的细胞类型,并在时间和空间上正确组织这些细胞,从而重现器官的真实发育过程。

    △研究人员开发了一本细胞“使用说明书”

    潜在的医疗应用

    希望这项研究能够推动对器官发育和功能的理解,以及遗传突变和发育错误如何影响器官疾病的研究。

    此外,据称这项研究为细胞和基因治疗的发展提供了潜力。事实上,能够产生所需的细胞类型可以促进临床相关干细胞的生产,用于治疗目的。

    Hala Zreiqat教授解释道:“这种方法具有巨大的实际意义。例如,在再生医学领域,器官移植迫切需要,进一步利用这种方法的研究可能有助于在实验室中培育功能性组织。

    Peter Newman博士补充说:“这项技术可能会彻底改变我们研究和理解疾病的方式。通过创建疾病组织的准确模型,我们可以在受控环境中观察疾病的进展和治疗反应。”

    研究人员特别希望他们的发现能够帮助治疗由黄斑变性和遗传疾病引起的视力丧失,导致视网膜光感受器细胞的丧失。

    Tam教授说道:“如果我们能够通过生物工程生成一片细胞,并观察整个系统的功能,那么我们就可以研究使用功能性细胞替代因疾病而丧失的眼睛细胞的治疗方法。”

    他补充道:“如果我们能够将健康细胞输送到眼睛中,将会产生巨大的影响。无论黄斑(视网膜中负责中央视觉的区域)是因为遗传疾病还是因为创伤而丧失,治疗方法都是相同的。”

    △BICO的Bio X 3D生物打印机是一种基于挤出的系统

    正在发展的3D打印器官

    尽管这项研究的结果令人充满希望,但能够3D打印可移植的器官仍然需要一段时间才能实现。然而,一些公司正在朝着这个长期目标取得进展。

    去年,新泽西州史蒂文斯理工学院的研究人员宣布,他们利用计算建模技术推进了基于微流控的3D生物打印,希望这能够实现整个人体器官的3D打印。

    此外,乌得勒支大学的一个研究团队已经成功利用超快体积3D生物打印技术制造出工作的肝脏。该团队通过3D打印器官样体(由干细胞制成的约1毫米的迷你单元,复制了其参考组织的某些特征)在不到20秒的时间内成功制造出超过1立方厘米的功能性肝脏单元。这些肝脏单元能够成功执行关键的毒素清除过程,模拟人体肝脏的功能。
     
    四川增材制造技术协会  2024  版权所有